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So what is it that really counts, structure or morphology?
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It depends on your perspective...
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1You see the structure here...; with every point, I have less to say about it!



Is there any structure apparent in this time series?
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e let’s look at the morphology first - local variability provides a good measure
of morphological information /features

o
w
T

ONCwe
RN OIWOlTA
Lo

o_o
oCpr
=

0 2000 4000 6000 8000 10000

e for the estimate of local variability, we used the local effective Holder ex-
ponent
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e in order to reveal structure smoothing, MA kernels have been applied to
enhance the collective properties of the variability
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e Link to the external temporal information reveals structure!
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inrinsic correlations in the heartbeat

e Autocorrelation function confirms the presence of invariant, intra-day pe-
riodic structure.



If our morphological description is:

e stationary
e isotropic
e uniform etc.
we are ready...
Then we can use its global characteristics (to represent the phenomenon:)
e distribution or
e power spectrum or
e fractal dimension or

e spectrum of dimensions
But if not (which is usually the case) we can look for the ‘structure’

e structure = dynamical (time, position dependent) model of phenomena
usually revealed by correlations in the raw data or in (morphological) fea-
tures.

e Correlations can be just temporal or multiscale (across scales) or scale
invariant (fractals!).

Examples of structure versus morphology
(in increasing complezity):

e The natural language

e DNA

e Supermarket customer?

2high correlation peak has been found for simultanous nappies and beer purchase just before the weekend!



Why Wavelets?

e To reveal morphological features at various resolutions

e To reveal the structure (of morphological features)




The wavelet transform is a convolution product of the signal with the scaled
and translated kernel - the wavelet w(a:)
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(W f)(s,b) = /da:f (=) .
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The scale parameter s ‘adapts’ the width of the wavelet kernel to the microscopic
resolution required, thus changing its frequency contents; the location of the
analysing wavelet is determined by the parameter b.



The Wavelet

e The only requirement for the wavelet v is that the wavelet has zero mean
- it is a wave function, hence the name wavelet.

e This admissibity requirement can be extended to orthogonality to polyno-
mial of some degree n.
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The Holder Exponent

e The ability of the Wavelet Transform to filter polynomials of degree P,
is particularly useful for us since it allows the assessment of local scaling
behaviour.

e This scaling behaviour is represented by the so-called Holder exponent
h(zg) of the function f(x):

|£(2) = Pa(z = 20)| < Cla = mo[*

e We can be tempted to extract h(zg) from the scaling of the wavelet trans-
form W f(zy, s).



e Extracting the local scaling behaviour seems possible following the modulus
mazima lines of the WT:
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e The maxima converge towards the singularities.

e For isolated singularities of the cusp type, the Holder exponent can be
easily extracted.



Just as much as structure is a matter of ‘model’ discovery, morphol-
ogy is a matter of definition!

It can be:

e a high frequency detail (e.g. an edge, or a set of)

e some low level model (e.g. the roughness exponent)

e a primitive shape (e.g. a circle, or its topological equivalent)

As such, morpology lends itself well to being characterised in terms of simple
structures like wavelets.



Wavelets in Morphological Analysis

local description
in presence of bias/non-stationarity
detailed information in terms of wavelets

— generic wavelets (Mexican hat, Haar)
— special wavelets (Cauchy, Morlet)

— custom wavelets (lifting scheme of wavelet construction, Sweldens)
we can see the wavelet as a ‘morphological primitive’

it can locally describe the data in terms of such a morphological primitive,
providing characteristics like local exponent or instantaneous frequency -
characteristic scale and location.



Wavelets in Structure Analysis:
e With the wavelet transform we can reveal :

— hierarchy
— nonstationarity
— non-uniformity

— non-isotropy

of (morphological) features

e which can be used to search for a _model






Recovering structure - it’s all about correlations...
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e direct correlation product (with normalisation)
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e ¢ neighbourood; voting - image processing community, Mallat for IFP
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e match neighbouring maxima (and you may recover the mapping function!)

Arneodo for IFP

e while matching it’s good to optimize some cost function - dynamic time

warping (speach recognition)

e and more...



But what if our morphology IS complicated and we don’t really have
a model for it?
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e Problem: correlations between stocks or currencies.



The wavelet transform can still be used to represent morphological

features!
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From above to below:
e input signal
e Haar WT - local average slope
e sign of Haar WT - slope up/down

e normalised log(amplitude) of Haar WT - local ‘roughness’
(red - rough, blue - smooth)

All these represent some aspects of morphology of the input signal and can be
used for similarity matching with other time series.



h-Representation - another look at morphology with wavelets

e We can use the largest maxima of the CW'T to partition the time series
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e Each point can be characterised by its local correlations exponent, or
roughness exponent

h-representation = { position, Holder exponent, sign }

Again, this ‘morphological’ representation can be used to search for structure
through mutual correlations



Fractals - example for scale invariant structures!
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e self-affine IFS function construction

e by construction invariant with respect to some (contractive) affine operator



Generic formula for IFS:
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Affine invariance w.r.t. (z — (3,)/0, revealed with the Mexican hat wavelet -
second derivative of the Gaussian smoothing kernel.



e neighbourhood, voting scheme, Mallat et al 1993
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e voting density field V scanned with parameters Alog(s), Az.

e (morphological) features following the same scaling law contribute to the

voting density field V(A log(s), Az).

05

06
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Tree matching scale invariance recovery, Arneodo et al. 1993
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e dynamical iterative maps revealed!
e non-linear invertible transformations can be recovered!

e drawback: match optimization has to be performed



Using estimated parameters o, 8,, a,,, we can solve the set of equations

flle) = on f(52) +m (2 = Ba) + 6n
(DVF)(2) = an (DU(EZE) 0™+, 1)
(DO (@) = an (DOf)(E22) 007

by sampling the corresponding wavelet decompositions on the recovered invari-
ant grid:
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A stack of wavelet transforms W® f, WO f and WO f. sampled with the affine
grid of bifurcations.



Once the IFS model is found the function can be reconstructed from it.
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Extending structure detection to 2 dimensions
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(used with permission)

Twisted snowflake J-P. Antoine et al, Proc SPIE, 1999

e voting can be used to show what are the symmetries in the pattern
e rotation invariance transformation can be revealed

e for scale invariant structures, scaling transformation can be revealed



Tree matching scale invariance recovery in 2-D

Complete WT maxima tree for the Sierpinski triangle
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Multiplicative measure on the Sierpinski triangle
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Quasi-fractals are around us!

e Is there any structure to DLA clusters?

(used with permission)

A. Arneodo et al, Phys. Lett. A, 1992

e five-fold symmetry

e Fibonacci branching



But how about a really complex phenomenon?

e Can we say anything about the ‘structure’ of the time series like S&P 5007
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(used with permission)

A. Arneodo et al. Fur. Phys. J. B, 1998

e The extraordinary fact: non-symmetric propagation cone of information!
(upper picture, a) )

e Shows that the volatility at large scales influences causally (in the future)
the volatility at shorter scales.

e Surrogate test (lower picture, b)) - randomly shuffled version of the data



2-ing up...

Wavelets in Morphological Analysis

e local description

e in presence of bias/non-stationarity

e detailed information in terms of wavelets

e we can see the wavelet as a ‘morphological primitive’

e it can locally describe the data in terms of such a morphological primitive,
providing characteristics like local exponent or instantaneous frequency

Wayvelets in Structure Analysis:

e With the wavelet transform we can reveal :

— hierarchy
— nonstationarity
— non-uniformity

— non-isotropy

of (morphological) features

e which can be used to search for a model



